Lecture 17: Minimizers, Orthogonal Complements and the Riesz Representation Theorem

  • Опубликовано: 2 месяца назад

    MIT OpenCourseWareMIT OpenCourseWare
    подписчиков: 4,4 млн

Ari Krishna
Ari Krishna

First of all, thank you so much for this clear and lucid presentation of the material. At 7:30, when Dr. Rodriguez illustrates the example of the complement of an open ball in R^2, he states that the set is neither closed nor convex -- I believe he meant to say that it is only non-convex (it would be closed by definition, as the complement of an open set in the usual metric topology) which would demonstrate the necessity of convexity; the minimum norm occurs across the boundary of the disk. If it were both closed and convex as a counterexample, we couldn't conclude that either property was necessary for the length-minimization property to hold. To show that being closed is also needed, we could also (in addition to Dr. Rodriguez's second example) take an open ball not centered at the origin: a unique minimum-norm element (some point closest to zero) would occur on its boundary, which the ball does not contain because that is its set of limit points.

2 месяца назад
jony stuck
jony stuck

Great Lecture!

2 месяца назад
Stirling Newberry
Stirling Newberry

He is slow but packs a punch all the way to the end of the lecture.

2 месяца назад
k tayeb
k tayeb

your inf is a minimum ,because it is attained

Месяц назад

Далее

17. Orthogonal Matrices and Gram-Schmidt

49:10

17. Orthogonal Matrices and Gram-Schmidt

MIT OpenCourseWare

Просмотров 141 тыс.

How to Speak

1:03:43

How to Speak

MIT OpenCourseWare

Просмотров 13 млн

Я единственна девочка с красными волосами в городе

12:35

Я единственна девочка с красными волосами в городе

Моя анимированная история

Просмотров 151 тыс.

TXT (투모로우바이투게더) 'Sugar Rush Ride' Official MV

3:33

ПРОКЛЯТАЯ  ВАЗ 2109 или ФЕСТИВАЛЬ НЕАДЕКВАТНОСТИ!

1:8:16

ПРОКЛЯТАЯ ВАЗ 2109 или ФЕСТИВАЛЬ НЕАДЕКВАТНОСТИ!

Независимый Эксперт

Просмотров 136 тыс.

КТО ПОСЛЕДНИЙ ВЫЙДЕТ ИЗ КРУГА ЧЕЛЛЕНДЖ

28:19

Lecture 2: Experimental Facts of Life

1:20:12

Lecture 2: Experimental Facts of Life

MIT OpenCourseWare

Просмотров 1,2 млн

25. Symmetric Matrices and Positive Definiteness

43:52

25. Symmetric Matrices and Positive Definiteness

MIT OpenCourseWare

Просмотров 89 тыс.

1. Introduction to the Human Brain

1:19:56

1. Introduction to the Human Brain

MIT OpenCourseWare

Просмотров 10 млн

The Exponential Function

38:54

The Exponential Function

MIT OpenCourseWare

Просмотров 483 тыс.

Lecture 1: Basic Banach Space Theory

1:15:19

Lecture 1: Basic Banach Space Theory

MIT OpenCourseWare

Просмотров 97 тыс.

Einstein's General Theory of Relativity | Lecture 1

1:38:28

Einstein's General Theory of Relativity | Lecture 1

Stanford

Просмотров 7 млн

Я единственна девочка с красными волосами в городе

12:35

Я единственна девочка с красными волосами в городе

Моя анимированная история

Просмотров 151 тыс.